본문 바로가기

Posts by PinkWink

(1381)
유럽의 시작, 로마. 그 강대함의 근원은 어디인가? 2009. 11. 10. 07:54 기원전 753년부터 서기 476년까지 1229년간 존속한 나라 고대 로마, 그 후 동로마제국이 멸망한 1453년까지로 확장해서 본다면, 무려 2206년 동안이나 존재한 나라 로마. 존재했다기 보다는 지금의 북아프리카와 중동의 서부, 중남부 유럽일대를 지배했던 나라, 고대 로마는 지구상의 역사이래 그와 같은 영향력과 영속력에서 따라올 나라가 없습니다. 그런 로마라는 국가가 왜 멸망했는가라는 주재의 책이나 연구물은 정말 많습니다. 그러나 왜 로마가 그리도 강대하고 그렇게 오래 살아남을 수 있었는가를 다루는 경우는 잘 보질 못했습니다. 비록 저의 지식이 그때 그때의 궁금증을 확인하기 위해 인터넷을 뒤진 것을 빼면 시오노 나나미씨의 로마인 이야기를 읽은 것에 불과하지만, 그래도 나름대로 그 이유를 이야기해보고 ..
[공업수학] 선적분 curve integral 2009. 11. 10. 05:59 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 공업수학 수업 자료입니다. 본 자료는 수업의 교재인 공업수학I 개정3판 (고형준 외, 도서출판 텍스트북스) 의 내용을 재구성한 것으로 수업보조 자료 이외의 목적이 없음을 알립니다. 곡선 위 곡선을 매끄러운 곡선(smooth curve)라고 합니다. 각 축 성분의 미분값이 모두 0이 아니어야하지요. 그리고 곡선의 양의 방향은 변수 t가 증가하는 방향입니다. 위 곡선은 매끄러운 곡선 C1, C2, C3가 만난듯이 보이지요. 이것을 조각별로 매끄러운 곡선(piecewise smooth curve)라고 합니다. 이렇게 시작점과 끝점이 만나면서 매끄러운 곡선을 폐곡선(closed curve)라고 합니다. 방금전 폐곡선은 꼬여있는 모양이었지만, 이번..
[공업수학] 벡터의 회전(curl)과 발산(divergence) 2009. 11. 10. 04:35 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 공업수학 수업 자료입니다. 본 자료는 수업의 교재인 공업수학I 개정3판 (고형준 외, 도서출판 텍스트북스) 의 내용을 재구성한 것으로 수업보조 자료 이외의 목적이 없음을 알립니다. 벡터장 벡터장은 벡터가 모여있는 것? 이라고 그냥 할까요?^^ 위와 같은 일반적 표현의 벡터함수가 벡터장(vector field)입니다. 물론 field의 정의를 내려야하지만, 우린 그냥 그렇다고 하죠. 이런 벡터장들은 여러가지 형태로 우리 주위에 모여있습니다. 흐름, 즉 방향이 있는 것은 전부 벡터장이라고 할 수 있습니다. 벡터의 회전 벡터의 회전(curl)은 위와 같이 정의됩니다. 그 계산은 Gradient를 계산할때 사용한 del 연산자를 이용해서 외적을 ..
Cart Pendulum의 동역학 유도 2009. 11. 6. 12:53 이미 예전에 다루었던 Inverted Pendulum과 그냥 Pendulum은 같은 기구 구성을 가지고, 그래서 동역학도 거의 같습니다. 사실 비선형을 유도한다음 선형화 동작구간만 달리해주면 선형방정식은 그냥 만들어 집니다. 이전에 Inverted Pendulum을 다루면서 동역학 유도부분이 좀 약하지 않았나 하는 생각에 Cart형 Pendulum의 동역학 유도를 다뤄보겠습니다. Cart Pendulum (카트형 역진자) 개요 ! 위와 같은 카트형 펜들럼을 보겠습니다. 카트와 바닥사이의 마찰과 진자의 고정축사이의 마찰까지 고려되어있습니다. 이번엔 라그랑지방법으로 동역학을 유도해 보기로 하죠. 그럴려면 시스템의 운동에너지와 위치에너지를 고려해 주어야합니다. 시스템의 운동에너지와 위치에너지 ! 카트는 수직방..
기계식 가속도센서의 원리 2009. 11. 5. 08:46 기계식 가속도센서 위 그림을 보겠습니다. 어떤 움직이는 상자안에 그림과 같이 스프링-질량-뎀퍼가 설치되어있다고 보죠. 상자가 갑자기 움직이면(즉, 가속도가 발생하면) 질량체가 그 반대로 움직일려고 할 것입니다. 이때 힘관계를 정리해보면 위와 같습니다. 질량(M)이 움직인 거리는 상자전체가 움직인 거리(x)에 그 안에서 질량이 움직인 거리(y)의 합일 것이고 그것으로 뉴턴의 역학(F=ma)을 적용해서 좌변으로 표현할 수 있을 겁니다. 그리고 스프링과 뎀퍼는 그 힘을 방해하는 방향으로 작용하게 되겠지요. 이때, 상자를 움직이는 엔진의 힘을 정의하고, 깔끔하게 다시 표현하면 2차 미분방정식이 되는군요. 여하튼 이와 같은 원리로 가속도를 얻을 수 있게 되는 것입니다. 즉, 상자안에서 이동한 거리(y)를 측정하면..
[선형변환] 이산시스템과 z 변환 (z-transform) 2009. 11. 5. 08:34 이산시스템 [공학기초/Theory] - [선형변환] Continuos Systems에서도 이야기했던 선형시스템이 될 필요충분조건인 superposition을 이산시스템에도 같이 적용한 것입니다. 이산신호라는 것은 연속신호를 일정 시간간격으로 샘플링해서 얻은 신호입니다. 실제 우리가 접하는 PC나 혹은 마이크로 프로세서를 사용하는 대부분의 시스템은 이산시스템이라고 말할 수 있습니다. 그것은 연속신호를 Digital 신호로 변환하기 때문이지요. 이런 이산시스템에서는 연속시간시스템의 미분방정식과 같은 것이 차분방정식입니다. 위는 그 차분방정식의 전형적인 풀이를 제시하고 있는데요. 미분방정식과 그 풀이가 아주 흡사합니다. Z - transform 역시 연속시스템에 Laplace Transform이 있다면, 이산..
깊어가는 가을 한권의 옛 시집을 꺼내 읽다... 2009. 11. 2. 04:47 고등학교때로 기억하는데요. 도종환 시인의 접시꽃당신이라는 당시에도 발간된지 오래된 시집한권을 우연히 읽게됩니다. 그 시집을 통해, 음악도 아닌 글자로만 만들어진 글도 사람의 마음속에 음악을 울릴 수 있다는 것을 알았습니다. 병으로 먼저 보낸 아내를 생각하며 만든 시라고 하던데, 자칫 신파로 흘러갈 수도 있었을 내용을 당시 10대인 제가 읽고도 큰 느낌을 받았을 정도로 감정의 경계를 잘 타고 있다는 느낌을 받았는데요. 올 가을, 또 왠지 스산한 이 느낌에 먼지가 뽀얗게 앉은 이 책을 발견하곤 그때의 감동도 다시 느낍니다. 앞서 간 아내 구수경의 영전에 못다한 이 말들을 바칩니다. 로 시작하는 이 시집은 결코 슬픔이나 아픔, 외로움을 부각시키려 애쓰지 않습니다. 물론 비어있는 자리에 대한 끝없는 외로움을 토..
[공업수학] 방향도함수와 접평면의 방정식 2009. 11. 1. 12:59 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 공업수학 수업 자료입니다. 본 자료는 수업의 교재인 공업수학I 개정3판 (고형준 외, 도서출판 텍스트북스) 의 내용을 재구성한 것으로 수업보조 자료 이외의 목적이 없음을 알립니다. 방향도함수 위의 그림에서 z=f(x,y)함수에 대한 x축이나 y축방향의 변화율은 각각의 편도함수로 구할 수 있을 것입니다. 그러나 만약 어떤 주어진 특별한 방향벡터에 대한 변화율은 어떻게 구할 까요? 위와같이 정의된 gradient 벡터를 사용합니다. 다시 위 그림에서 보면 어떤 곡면의 z쪽을 0으로 두어 xy평면에 대해서만 생각을 해보겠습니다. P점에서 이동한 경우 단위벡터와 직선 이동거리에 대한 크기를 각각 구할 수 있을 것입니다. 그리고 나면 할선의 기울기..

반응형