Theory (227) 썸네일형 리스트형 [공업수학] 극좌표계에서의 이중적분 2009. 11. 22. 01:20 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 공업수학 수업 자료입니다. 본 자료는 수업의 교재인 공업수학I 개정3판 (고형준 외, 도서출판 텍스트북스)의 내용을 재구성한 것으로 수업보조 자료 이외의 목적이 없음을 알립니다. 위 그림들에서 (a)의 넓이를 고려해보죠. 정적분의 일반적인 현상을 고려하기 위해 그림 (b)처럼 나누고, 그 중 하나를 확대해보면 (c)처럼 나타나게 될것입니다. 이때 (c)의 넓이는 두 부채꼴의 넓이의 차이므로라고 생각할 수 있을 것입니다. 위 식에서 1/2(r_k+1 + r_k)의 부분은 반지름의 평균으로 볼 수 있겠네요. 그리고 delta r 과 delta theta 로 표현가능하구요.위 그림 (b)에서 무한등분으로 다시 표현하면 위 수식처럼 표현 가능합니.. Strapdown system과 Stable Platform System 2009. 11. 16. 00:38 IMU (Inertial Measurement Unit)! Inertial Navigation 이라는 것은 회전각속도(gyro)계와 직선 가속도계(accelerometer)를 이용해서 회전각(orientation)과 위치(position)을 검출하는 기술을 이야기합니다. 여기서 확장해서 공간상의 3축 직교좌표계에 대해 검출하는 것을 특별히 IMU (Inertial Measurement Unit) 이라고 합니다. 이 IMU는 크게 두가지로 나눠지는데요. 그것이 Stable Platform System과 Strapdown System입니다. 아 그리고 미리 말씀드리는데 흔히들 말씀하시는 각종 적분에러(드리프트오차)나 여러 외란으로 인한 필터의 설계는 이 이야기와는 다른 이야기입니다. 이 분류는 단시 Gimb.. [공업수학] 이중적분 2009. 11. 15. 15:24 이중적분 이번에는 2중적분에서 구간의 설정과 간단한 예제. 그리고 질량중심과 관성모멘트의 도출을 간단히 다뤄보겠습니다. 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 공업수학 수업 자료입니다. 본 자료는 수업의 교재인 공업수학I 개정3판 (고형준 외, 도서출판 텍스트북스) 의 내용을 재구성한 것으로 수업보조 자료 이외의 목적이 없음을 알립니다. 이중적분 이중적분을 위에서 처럼 순서로 생각해보면 두가지로 생각해 볼 수 있을 겁니다. (뭘 먼저 적분하는가.. 하는 문제 말이죠) 정적분이라고 생각해야하는 것이니 먼저 적분되는 쪽은 다른쪽 변수로 함수화된 구간으로 주어져야할 것입니다. 위 문제를 보죠. 위 구간에서 이중적분을 수행해달라는 건데요. x쪽을 먼저 적분해야하는 걸로 보면, x=y부.. [공업수학] 경로의 무관성 2009. 11. 15. 15:04 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 공업수학 수업 자료입니다. 본 자료는 수업의 교재인 공업수학I 개정3판 (고형준 외, 도서출판 텍스트북스) 의 내용을 재구성한 것으로 수업보조 자료 이외의 목적이 없음을 알립니다. 경로의 무관성 위와 같이 좌측의 미분을 우측처럼 표현할 수 있을때, 완전미분방정식이라고 합니다. 위 처럼 Phi가 결정되면 P나 Q함수의 모양이 만들어지겠죠. 이런걸 완전미방이라고 한다는 겁니다. 만약 위와 같이 생각해보면, 하나의 함수로 표현할 수 없습니다. 이러면 완미방이 못되는 거죠. 완미방이면서 경로에 무관하면, 원함수에 경로의 처음과 끝점만 넣어주면 됩니다. 여기서 경로에 무관하다는 것은 어떤 경로로 선적분을 수행해도 같은 결과가 나타나는 것을 의미합니.. [C/C++] 재귀호출 2009. 11. 15. 14:43 재귀호출 재귀호출은 함수가 내부에서 자기 자신을 호출을 하는 것을 이야기합니다. 자칫 치명적인 오류를 범할 수도 있고, 꼭 재귀호출을 사용하지 않더라도 분명 많은 방법으로 동일한 결과를 얻을 수 있습니다. 그러나, 어떤 알고리즘을 구현하다 보면 재귀호출은 분명 매력적인 방법입니다. 그 중에서 오늘은 팩토리얼(Factorial), 피보나치(Fibonacci)와 하노이(Hanoi)탑 문제를 재귀호출로 구현하는 것을 보여드리겠습니다. 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 컴퓨터 언어 응용 수업 자료입니다. 본 자료는 수업의 교재인 (핵심요약판) C++로 시작하는 객체지향 프로그래밍 (Y. Daniel Liang 저, 권기형 / 김응성 공역) 의 내용을 재구성한 것으로 수업보조 자료.. [공업수학] 선적분 curve integral 2009. 11. 10. 05:59 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 공업수학 수업 자료입니다. 본 자료는 수업의 교재인 공업수학I 개정3판 (고형준 외, 도서출판 텍스트북스) 의 내용을 재구성한 것으로 수업보조 자료 이외의 목적이 없음을 알립니다. 곡선 위 곡선을 매끄러운 곡선(smooth curve)라고 합니다. 각 축 성분의 미분값이 모두 0이 아니어야하지요. 그리고 곡선의 양의 방향은 변수 t가 증가하는 방향입니다. 위 곡선은 매끄러운 곡선 C1, C2, C3가 만난듯이 보이지요. 이것을 조각별로 매끄러운 곡선(piecewise smooth curve)라고 합니다. 이렇게 시작점과 끝점이 만나면서 매끄러운 곡선을 폐곡선(closed curve)라고 합니다. 방금전 폐곡선은 꼬여있는 모양이었지만, 이번.. [공업수학] 벡터의 회전(curl)과 발산(divergence) 2009. 11. 10. 04:35 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 공업수학 수업 자료입니다. 본 자료는 수업의 교재인 공업수학I 개정3판 (고형준 외, 도서출판 텍스트북스) 의 내용을 재구성한 것으로 수업보조 자료 이외의 목적이 없음을 알립니다. 벡터장 벡터장은 벡터가 모여있는 것? 이라고 그냥 할까요?^^ 위와 같은 일반적 표현의 벡터함수가 벡터장(vector field)입니다. 물론 field의 정의를 내려야하지만, 우린 그냥 그렇다고 하죠. 이런 벡터장들은 여러가지 형태로 우리 주위에 모여있습니다. 흐름, 즉 방향이 있는 것은 전부 벡터장이라고 할 수 있습니다. 벡터의 회전 벡터의 회전(curl)은 위와 같이 정의됩니다. 그 계산은 Gradient를 계산할때 사용한 del 연산자를 이용해서 외적을 .. Cart Pendulum의 동역학 유도 2009. 11. 6. 12:53 이미 예전에 다루었던 Inverted Pendulum과 그냥 Pendulum은 같은 기구 구성을 가지고, 그래서 동역학도 거의 같습니다. 사실 비선형을 유도한다음 선형화 동작구간만 달리해주면 선형방정식은 그냥 만들어 집니다. 이전에 Inverted Pendulum을 다루면서 동역학 유도부분이 좀 약하지 않았나 하는 생각에 Cart형 Pendulum의 동역학 유도를 다뤄보겠습니다. Cart Pendulum (카트형 역진자) 개요 ! 위와 같은 카트형 펜들럼을 보겠습니다. 카트와 바닥사이의 마찰과 진자의 고정축사이의 마찰까지 고려되어있습니다. 이번엔 라그랑지방법으로 동역학을 유도해 보기로 하죠. 그럴려면 시스템의 운동에너지와 위치에너지를 고려해 주어야합니다. 시스템의 운동에너지와 위치에너지 ! 카트는 수직방.. 이전 1 ··· 20 21 22 23 24 25 26 ··· 29 다음